# SZ4D Contributions from field Geoscience



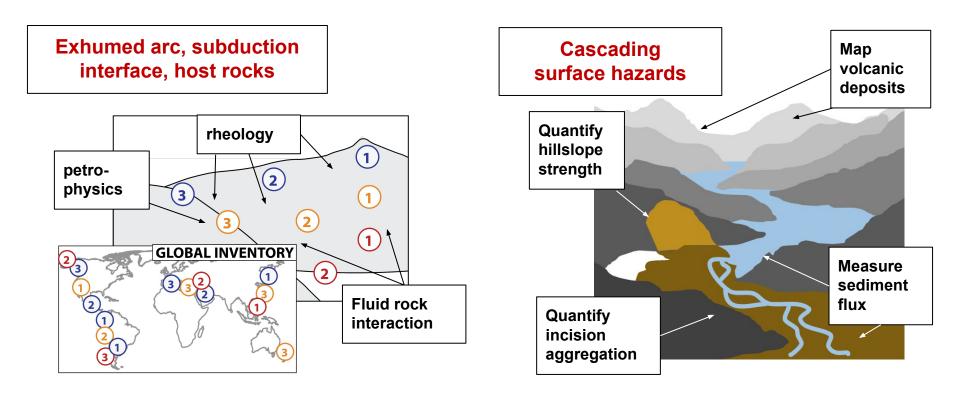


contact@sz4d.org



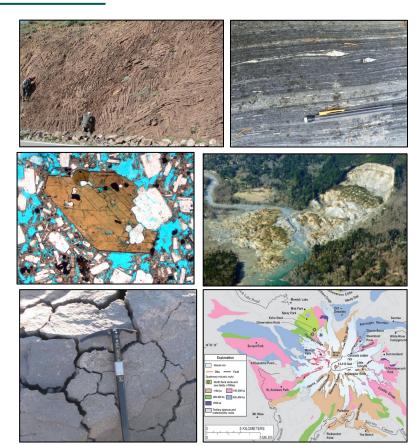
♥ @SZ4D1










### Key Role of the Field Geosciences Two examples



## **Key Role of the Field Geosciences**

- Geoscience data are critical to answer SZ4D Questions for all working groups; record mechanical, physical, chemical processes
- Need lots of data: Large quantities of envisioned geoscience data require the collection, analysis, and synthesis of data, collected by numerous scientists from diverse subdisciplines
- Need to integrate: Requires the coordination of people and integration of data across geoscience, geophysical, modelling, and laboratory groups, from experimental design through completion.
- **Built into SZ4D Structure:** Field Geoscience Deployments on parity with instrument arrays, modelling, and lab networks in SZ4D vision (Catalyst proposal)



## A Community Field Geoscience Experiment: GeoArray

## What should a large scale, collaborative, SZ4D Geoscience Field Array (GeoArray) look like?

SZ4D RCN

- All Hands meetings
- Working Group meeting
- Ad Hoc sub committee meetings

We've also been gathering community feedback:

- April 30 2021: Geology and Experiments Virtual Town Hall
- Fall 2021 Summer 2022: small group meetings
- Oct 2022 GSA: Field Deployment in person workshop

## **Priority Needs of the Field Geosciences** Identified in discussions to date

- Human infrastructure to support:
  - Travel logistics, field safety, equipment shipping
  - Coordination of PI research form inception to completion
  - Onboarding mechanisms to support inclusive research practices
- **Physical Infrastructure** to support:
  - Field lodging, field vehicles, field research equipment, meeting space (Field Station)
  - Sample shipping, storage, archival, dissemination (Sample Repository)
  - Data management (standard data collection, archival dissemination)

The field geosciences could greatly benefit from coordinated, centralized Human & Physical Infrastructure resources to collect the scale of integrated geological data required to answer SZ4D questions









# Need effective strategies to foster large scale collaborative, integrative research









#### Some ideas that have been put forward:

- Community Field Sites (ex: Critical Zone Observatories)
- Community Data Collection Expeditions (ex: IODP on Land, Coordinated EDMAPs)
- Community Sample Repositories, sample parties 🥳 🎉
- SZ4D PI matching, proposal writing workshops, lab visit and exchange programs, sabbatical programs
- Coordinated data synthesis efforts through workshops (e.g. CIDER)
- Chapman or Penrose conferences, field schools & field trips, student training programs
- REU cohorts, PhD cohorts, PostDoc cohorts

## The GeoArray vision: Moving Forward

- What are the best strategies to implement large scale collaborative geological research in SZ4D?
- How can geologic activities be best integrated with modelling, laboratory, instrumental, and geophysical activities?
- What are the best practices to build an inclusive program with ample access to onboard new scientists, especially those who have not previously worked in SZ4D special interest regions?
- What is the ideal balance between community-level research vs PI-level research?



*"Creating support for terrestrial-based field science as a facility is potentially one of the most transformative aspects of SZ4D"*