

Signal extraction and characterization from geodetic datasets using Al approaches

Christelle Wauthier

Associate Professor, Pennsylvania State University, <u>cuw25@psu.edu</u>

3 August 2023, SZ4D AI Workshop

Motivation

- Interferometric Synthetic Aperture Radar (InSAR) and time series datasets contain many signals of various origin and are thus complex to analyze temporally and spatially:
 - Several deformation sources (magmatic, seismic, loading/unloading etc.)
 - Atmospheric signals

Methods to correct for atmosphere – separate signals?

• Global weather models

=> Do not always work (issues with coarse spatial resolution and high topography variability at volcanoes)

(Stephens et al., 2020)

Methods

- Global weather models
- Machine learning:
 - Purely data-driven (no *a priori* information): Principal Component Analysis (PCA) / Independent Component Analysis (ICA), etc.

(e.g., Ebmeier , 2016; Larochelle et al., 2018; Gaddes et al., 2019; Walwer et al., 2022, etc.)

• Deep learning

(e.g., Rouet-Leduc et al., 2021; Anantrasirichai et al., 2018; 2019; Sun et al., 2020 etc.)

Artificial Intelligence

The theory and development of computer systems able to perform tasks normally requiring human intelligence

Machine Learning

Gives computers "the ability to learn without being explicitly programmed"

Deep Learning

Machine learning algorithms with brain-like logical structure of algorithms called artificial neural networks

Methods

- Global weather models
- Machine learning:
 - Purely data-driven (no *a priori* information): Principal Component Analysis (PCA) / Independent Component Analysis (ICA), etc.
 - Deep learning

Artificial Intelligence

The theory and development of computer systems able to perform tasks normally requiring human intelligence

Machine Learning

Gives computers "the ability to learn without being explicitly programmed"

Deep Learning

Machine learning algorithms with brain-like logical structure of algorithms called artificial neural networks

MSS-A (Multichannel Singular Spectrum Analysis)

- Generalization of PCA: MSS-A (Multichannel Singular Spectrum Analysis)
- Purely **data-driven**: no *a priori* information needed
- Very good at retrieving seasonal (harmonic) signals (atmosphere!)
- MSS-A simultaneously uses temporal and spatial correlations

Cumulative Up displacement [cm]

MSS-A

• Modes of variability are derived from the eigenvector decomposition of a covariance matrix composed of lagged InSAR time series

- Cumulative Up displacement [cm]
- Signals that are strongly correlated in space and time will have highest eigenvalues

(Walwer et al., In Review JGR)

MSS-A

Time [year]

- Other datasets are used and decomposed with the same approach (MSS-A) to help with the interpretation of the extracted PC modes:
 - GPS
 - GRACE (gravity)
 - GACOS (atmosphere)
 - Daily rainfall

MSS-A

- Comparison can help distinguishing between hydrological (loading/unloading) and atmospheric effects.
- Common modes for several datasets show that many non-linear trends modes are associated with hydrological processes: deformation caused by either multiannual variations in groundwater content or in surface water load (i.e., Larochelle et al., 2021).

Methods

- Global weather models
- Machine learning:
 - Purely data driven (no *a priori* information/models/solutions): Principal Component Analysis / Independent Component Analysis (ICA), etc.

• Deep learning

Artificial Intelligence

The theory and development of computer systems able to perform tasks normally requiring human intelligence

Machine Learning

Gives computers "the ability to learn without being explicitly programmed"

Deep Learning

Machine learning algorithms with brain-like logical structure of algorithms called artificial neural networks

Deep Learning for Denoising InSAR data: Convolutional Neural Network (CNN)

- Neural Network
- Simulate brain: neurons interconnected to other neurons which forms a network.
- A simple information transits in a lot of them before becoming an actual thing, like "move the hand to pick up this pencil"
- Enter variables as inputs: for example, an image, and after some calculations, an output is returned: giving an image of a cat should return the word "cat"

Deep Learning for Denoising InSAR data

- First step: training stage
- Synthetic dataset: simulate the InSAR phase from various signal contributions

Deep Learning for Denoising InSAR data: Convolutional Neural Network (CNN)

Deep Learning for Denoising InSAR data: Application to **real InSAR dataset**

• **INPUT** = Sixty consecutive InSAR surface displacement maps at Masaya caldera (Nicaragua) obtained with InSAR time-series approach (SBAS, Berardino et al., 2002)

(Sun et al., 2020)

Deep Learning for Denoising InSAR data: Application to **real InSAR dataset**

• OUTPUT = Sixty predicted consecutive InSAR DENOISED surface displacement maps

(Sun et al., 2020)

Deep Learning for Denoising InSAR data: Application to real InSAR dataset

- Comparison of
 - Input (InSAR)
 - Output (CNN Predictions)

• GPS

Future work

- "On man's trash is another man else's treasure": work with "the others" aka atmospheric scientists to use more accurate weather models – locally tested and perhaps improved back from the deep learning results / or use Weather data assimilation
- Test for various atmospheric conditions
- Expand to S L band (longer radar wavelengths) for upcoming NASA NISAR mission: need to consider ionospheric effects too
- Improve CNN to train and test for more deformation source types and avoid geodetic inversions all together!

Thank you Questions?

Many thanks to Jian Sun, Damian Wawer, Kirsten Stephens, Judit Gonzalez Santana and collaborators and colleagues!