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Weather prediction: Unprecedented  
Resolution for AI, “100,000x” faster than 

traditional methods
[1] PSHRCMKHLAHKA

CO2 storage: Multiphase flow for CO2-
water interactions, “60,000x” faster (2d),

“700,000x” faster (3d).
[2] WLLAAB



Applications
• Weather (Nvidia)

• Carbon Capture & Storage (Stanford)

• Lithography (Nvidia)

• Fluid Mechanics (Caltech)

• Solid Mechanics (Caltech)

• Molecular Dynamics (Argonne)

• Fusion (UK atomic)

• Catheter (Caltech)

• Clima Cloud (Caltech)
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Operator learning

Input: coefficient Output: solution

Operators are map between function space.
Given a dataset of input-output pairs, find the map (operator)

Input: initial Output: solution

F: a->u F: u0->u1



Solve vs learn

Solving for a PDE instance 𝑢
approximate 𝑢(𝑥) in the spatial space.

learn the solution operator ℱ
interpolate 𝑢 in the function space.



Neural networks vs Neural operators

Continuous functionDiscretized vector

We want to define the model in the function spaces of the PDE.



Neural networks

f: x→ y
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Neural operators
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Fourier neural operators
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Fourier neural operators

F: x(s)→ y(s) Input
function

x(s)

Output 
function

y(s)

Convolution
operator

Non-linearity
operator

[4] Fourier neural operator. LKALBSA (2021)



Approximation theory

• Neural operator can approximate any continuous operator.

• FNO can mimic pseudospectral solvers to get a bound on the number
parameters.

• FNO (non-linear decoder) can be more efficient than DeepONet

• FNO (non-linear decoder) can approximate any continuous operator
with 1 Fourier mode (but higher channel dimensions).

[5] Nikola Kovachki et. al. 2021

[6] Nikola Kovachki et. al. 2021

[7] Samuel Lanthaler et. al. 2023

[8] Samuel Lanthaler et. al. 2023



Discretization convergent (wrt refinement)

Discretization-invariance is a design philosophy. We define the problem in infinite space and then discretize the model.
In practice, many recently-developed NNs are indeed discretization-invariant (e.g. GraphCast, Transformer)



Extrapolation to unseen frequencies



FNO compared to numerical solvers

2d Euler 2d NS

For larger scale, higher dimension, time-dependent problems, the neural operators seems to converge faster.

[13] F-FNO. Alasdair Tran et. al.



PINO: Physics-informed neural operator

Data loss: compare the prediction
and ground-truth solution

Equation loss: plug the prediction
into PDE and compute the residual

[14] PINO: LZKJCLAA

[15] Fourier-continuation PINO: MLWLBHA



PINO: Physics-informed neural operator



• PINO gets 2% error on Re500 [2π x 2π x 1s]
• Easily generalize from one Re to another

Truth

PINO

Relative error: PINO: 0.9%, PINN:18.7%



Convergence

PINO converges faster than PINNs but slower than solvers



Geo-FNO: geometric-aware neural operator

Use deformation to construct adaptive meshes for complex geometries and
multiscale structures.

FFT computation
mesh Adaptive mesh



Geo-FNO
Idea: deform the irregular physical space to a uniform latent space, so the FFT can
be applied in the latent space.

[19] Geo-FNO: LZLA



Examples: Airfoils

Error = 1.3%
10^5 speedup

truth

prediction

error



Examples: Plastic equation

Plastic forging problem: a block of material is impacted by a frictionless, rigid die
from top.

t=4 t=8 t=12 t=20t=16

Truth

Prediction

Error = 0.7%



Fourier + Graph representation

Input 
Samples GNO FNO GNO Prediction

discretize query

Operates on 
input geometry

Operates on (latent) 
regular geometry

Projects to 
output geometry 

-134. -48.3 37.2  123.  208.  

FNO layers



Irregular grid + Discretization consistent



High accuracy



Drag coefficient
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