Understanding drivers of geohazards using geochemical methods

(Jaime D. Barnes, University of Texas at Austin)

Fluids and fluid migration

How does fluid migration influence hazards and material transport across the entire subduction system?

Fluids play a critical role in subduction zones:

- 1) Nature of seismic behavior along the megathrust (& associated faults)
- 2) Rock rheology and strain localization
- 3) Volcanic eruptive behavior
- 4) Resources: geothermal to critical metals

In Iluids/volatiles/FME – amount? source? pathway?elemental concentrations, ratio, isotopic composition

McGuire et al (2017; SZ4D Initiative)

Stable Isotope Geochemistry

$$\delta^{7}\text{Li} = \left(\frac{{}^{7}Li/{}^{6}Li_{sample}}{{}^{7}Li/{}^{6}Li_{standard}} - 1\right) x 1000$$

measured on a mass spectrometer
Traditional: O, H, C, N, S
Non-traditional: Cl, Li, B, Ca, Fe, Cu, Zn...

Inputs

Exhumed

What is being lost where?

- concentrations
- elemental ratios
- isotopic compositions
 - @ high-T fractionations
 - are small

 trace source

McGuire et al (2017; SZ4D Initiative)

Barnes et al (2019)

modified from Kendrick et al (2013); additional data from John et al. (2011); Chavrit et al (2016)

Stable isotope data and elemental ratio data
seawater and sedimentary pore fluids

Not a change in fluid source, but rather fluid flux

Extensional in the North
Higher permeability of
upper plate
Larger fluid flux

Compressional in the South
Lower permeability of upper
plate
Lower fluid flux

Barnes et al (2019)

Low Q (inverse of seismic attenuation)

high fluid content

Distinct concentration highs correlate with low Q

Eberhart-Phillips et al (2017)

Low Q (inverse of seismic attenuation) ☐ high fluid content

Distinct concentration highs correlate with low Q

☐ integration of geochemical data with other data (e.g., geophysical, mechanics)

Eberhart-Phillips et al (2017)

Understanding drivers of geohazards using geochemical methods

(Madison Myers, Montana State University)

Magmas, Melts, and Gases

How do we use the erupted materials from volcanic systems to understand the processes and timescales for triggering volcanic eruptions

Sidebar 3: What drives a volcanic eruption?

Volcanic eruptions are triggered by both internal processes (from within the magma or magmatic system) and external process (e.g., landslides, earthquake). The most common mechanism for triggering eruptions in arc settings is deeper, hotter magma entering a shallower magma storage region, but eruptions can also be initiated by buildup of gas pressure related to crystallization. One open question volcanologists are trying to constrain is how much time will elapse between the triggering event, and the physical eruption.

Geochemistry, volatiles and petrology can inform on:

- 1) What triggers and eruption to occur and over what timescale?
- 2) Integrate petrological and geochemical data with geophysics
- 3) Improve our models (diffusion, ascent, overpressurization, etc.) to represent processes
- 4) Measurement, solubility and volatile pathways
- 5) Real time collection and processing

1) What triggers and eruption to occur and over what timescale?

Kent et al. 2020

1) What triggers and eruption to occur and over what timescale?

Kent et al. 2020

2) Integrate petrological and geochemical data with geophysics

Ruth et al. 2018

Rasmussen et al. 2018

3) Improve our models (diffusion, ascent, overpressurization, etc.) to represent processes

Hajimirza et al. 2021

Massaro et al. 2018

4) Measurements, solubility and volatile pathways

Muth and Wallace 2021

Lerner et al. 2021

5) Real time collection and processing

Re et al. 2021

Pankhurst et al. 2022

Volcanica

Understanding drivers of geohazards using geochemical methods

Figure 4. Schematic diagram illustrating the key components of a subduction system and domains (colored boxes with labels **A** to **F**) that are commonly investigated as an isolated system of fluid migration. Boxes **F** indicate example regions where microscopic and/or short-time-scale problems have been investigated.