Magmatic Drivers of Eruption

Pete Barry – WHOI MDE Co-Chair

(SZ4D

Houston Meeting | November 14, 2022

Eruption plume of Great Sitkin volcano, Alaska captured by Lauren Flynn (USFWS) May 25, 2021.

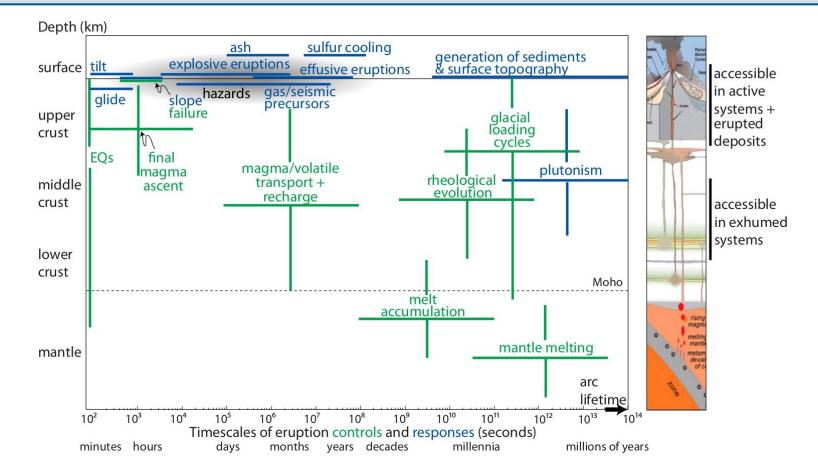
Motivation: Why study Magmatic Drivers of Eruption?

- Make scientific discoveries using integrative and collaborative approach.
- Connect the most hazardous volcanoes on Earth to underlying subduction drivers.
- Address societal needs (i.e., volcanic hazards, forecasting).
- 800 million people live in regions that are directly exposed to volcanic hazards. Vast majority in subduction zones.
- Critical mineral and energy resources also occur in subduction zones.

Big picture questions:

Q1: How do trans-crustal processes initiate eruptions at arc volcanoes?

Requires investigating eruption cycles at restless volcanoes.


Q2: What controls magma supply rate?

Requires understanding both eruption cycles and arc scale, trans-crustal processes.

Q3: What is the depth and distribution of magma?

Requires understanding arc scale, trans-crustal processes.

Spatial and Temporal Scales of the Trans-crustal Magmatic System

Magmatic System Controls	Magmatic System Responses		
	Eruption precursors and run-up time	Plutonism, intrusion, and repose	Eruption style, vigor, and duration
 Supply Rates: Magma and Volatiles What controls production rate in the mantle? What controls recharge rate? What controls recharge composition? What controls volatile accumulation? 	High CO ₂ / S gases weeks to month prior to eruption signal deep recharge. <i>Werner et al. (2020)</i> Mafic eruptions have shorter intiation times. <i>Kent et al. (2019)</i>	Intrusive flux is related to extrusive flux. <i>Till et al. (2019)</i> Mafic eruptions have shorter repose times. <i>Passarelli & Brodsky</i> <i>(2012)</i>	Slow subduction is correlated with lava domes. Zellmer (2009) Fast magma ascent results in higher intensity eruptions. Gonnermann & Manga (2012)
 Depth and Distribution of Magma How does magma travel through the entire crust? How deep does the volcanic system extend? Why and where do magmas stall? What controls storage depths prior to eruption? 	Mantle can recharge during an eruption. <i>Ruprecht & Plank (2013)</i> Slow vanguard ascent and staging of eruptions. <i>Roman & Cashman (2018)</i> Magma systems shallow due to thermal priming. <i>Gualda et al. (2018)</i>	Optimal depth of magma chamber growth. <i>Huber et al.</i> (2019) Plutons focus due to thermal weakening. <i>Ardill</i> (2018) Magma supply influences reservoir location. <i>Lerner et al.</i> (2020)	Basaltic Plinian eruptions are sourced from shallow magma systems. Bamber et al. (2020) Rhyolitic Plinian eruptions sourced from depth and magma ascends quickly Castro & Dingwell (2009)
 Rheology and Stress State What controls magma density, viscosity, and volatiles? What controls crustal rheology? What controls the stress state of the crust? What are the roles of slope failure and earthquakes in eruption triggering? 	Rheology, tectonic stress, buoyancy control magma stalling depths. <i>Watanabe et al.</i> (1999) Static stress from M≥7.5 earthquakes < 200 km away can trigger eruptions. <i>Nishimura</i> (2017)	Silic magma systems have longer repose. Passarelli & Brodsky (2012) Longer repose -> weakened crust and reduced failure DeGruyter & Huber (2014) Large viscous systems require an external trigger. Gregg et al. (2012)	Extesion favors calderas. <i>Wilson et al. (1995)</i> Microlites growing rapidly and heterogeneously during ascent from shallow storage can cause basaltic Plinian eruptions. <i>Sable et al. (2006)</i> <i>Bamber et al. (2020)</i>

Big picture questions:

Q1: How do trans-crustal processes initiate eruptions at arc volcanoes?

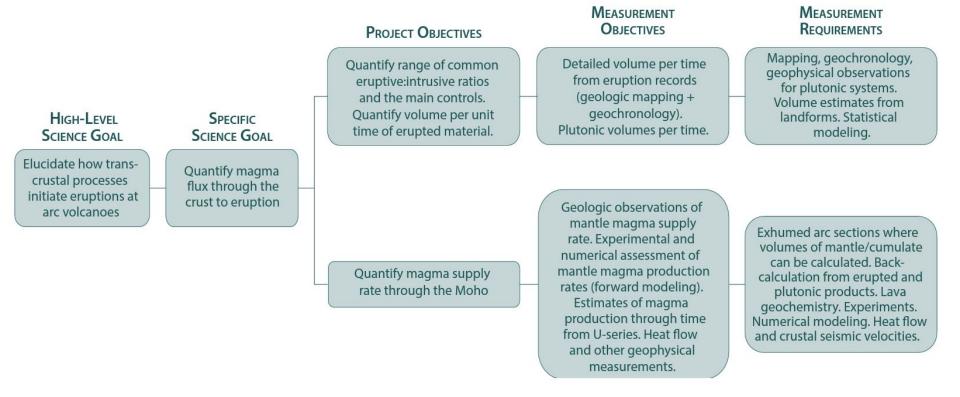
Requires investigating eruption cycles at restless volcanoes.

Q2: What controls magma supply rate?

Requires understanding both eruption cycles and arc scale, trans-crustal processes.

Q3: What is the depth and distribution of magma?

Requires understanding arc scale, trans-crustal processes.


Hypothesis-A: Gas and magma composition are linked to eruption precursors, run-up times, and intensities

Hypotheses:

Hypothesis-B: Mantle magma production and supply rates govern the intrusive/extrusive mass budget, repose time, magmatic architecture

Hypothesis-C: Periods and drivers of different external eruption triggers exist over timescales of minutes to > 100,000 years

Example of Traceability Matrix approach:

Sparse Sensor Arrays

Scope:

- 30 Restless Volcanoes
- probability of ≥0.8 for capturing 10 eruptions in a 10-year period

Ideal Locations:

- Full range of magma type, degassing and deformation modes, unrest and eruptive style, and subduction and upper plate parameters
- Restless

Rapid Response Arrays

Deployment Scope:

- Strategic caches of instruments
- Widespread remote sensing to identify candidate targets.
- Rapid Human Deployment
- CONVERSE-type Advisory Group

Ideal Locations:

• Ideally housed in target regions

epth & distribution

Dense Imaging Arrays

- 3 different arcs:
 - slow, medium, fast convergence
- 10 volcanoes, pair in each arc

Ideal Locations:

- Range of Convergence Rates
- Simple crustal tectonics/structure (representative)
- Excellent Exposures/Access

Exhumed Arc Systems

Targets / Scope:

- Different Depths
- Different Magma Fluxes
- Different Compositions
- Not starting from Scratch
- Co-location

supply

32: Magma

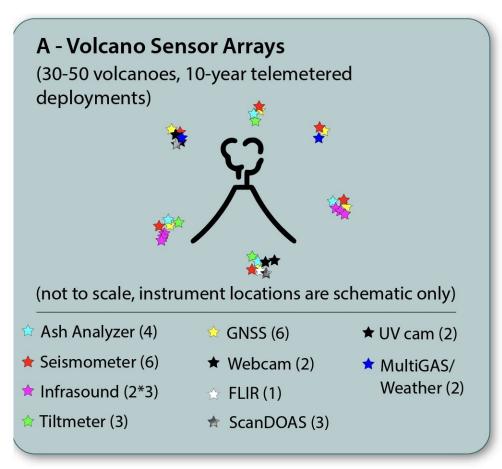
g

Big picture questions:

Q1: How do trans-crustal processes initiate eruptions at arc volcanoes?

Requires investigating eruption cycles at restless volcanoes.

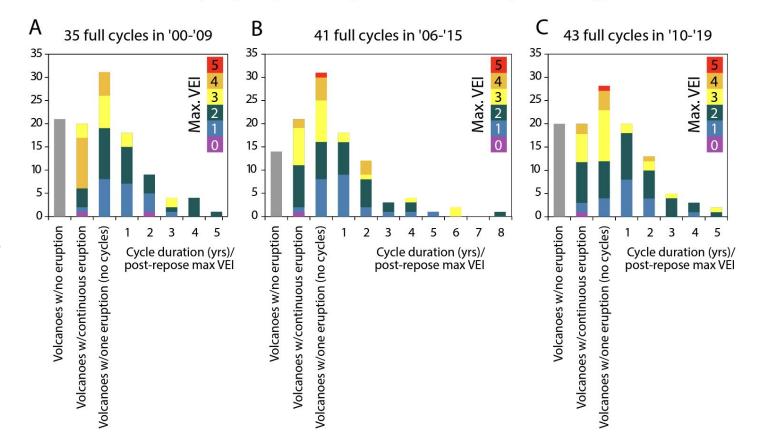
Q2: What controls magma supply rate?


Requires understanding both eruption cycles and arc scale, trans-crustal processes.

Q3: What is the depth and distribution of magma?

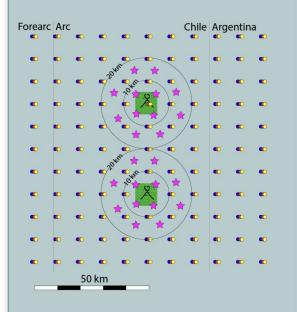
Requires understanding arc scale, trans-crustal processes.

Sensor Arrays (30-50 volcanoes):


- Sparse instrument deployments of seismometers, acoustic sensors, MultiGas sensors, DOAS, GNSS receivers.
- Coupled with geochemical and geological studies.
- Volcano Remote Sensing, at a large number of systems that are likely to erupt within the coming decade.

Likelihood of capturing an eruption:

10-year observation sets from monitoring 99 actively-degassing/deforming volcanoes worldwide (Carn/Furtney)


If we had deployed Volcano Sensor Arrays at all 99 volcanoes worldwide that were degassing over a 10-year period between 2000 and 2020, we would have observed ~30 full eruption cycles.

Imaging Array (10 volcanoes):

- Dense instrumentation arrays on a ~3 carefully chosen systems.
- Investigate volcano pairs in each system.
- Quantify magma supply rates from the mantle, the geometry of the trans-crustal magmatic system, and eruptive histories Therefore, these systems do not need to erupt during the duration of the Volcano Imaging Array deployment

B - Volcano Imaging Arrays (3 pairs of neighboring volcanoes, campaign/non-telemetered)



- BB seismic (~10 km spacing, 2 years, integrate with MultiArray)
- Nodal seismic (~1.5 km spacing, 2 months)
- MT (~10 km spacing, ~1 week/point)
- O Bouguer gravity survey point
- Volcano Sensor Array instrument (10 years, within ~20 km of vent, see VSA diagram for details)

Geographic Targets

Big Picture Questions:

Q1: How do trans-crustal processes initiate eruptions at arc volcanoes?Q2: What controls magma supply rate?Q3: What is the depth and distribution of magma?

Chilean Arc Supports all 4 notional experiments:

- 1. Sparse Sensor Array ~30 volcanoes (Q1)
- **2. Rapid Response** during eruptions (Q1)
- 3. Dense Imaging Array ~10 volcanoes (Q2&3)
- **4. Exhumed Arc Systems** (Q2&3)

Alaska-Aleutian Arc

Supports an analogous Sparse Sensor Array and Rapid Response Arrays (Q1):

- High probability of catching an eruption
- Range of volcano types, unrest and eruptive styles, and subduction and upper plate parameters
- Links to and enhances current monitoring efforts

Cascades Arc

Supports analogous Dense Imaging Arrays (Q2&3):

- Range of stress states, basement types, slab age
- Large variations in volcano and eruption types (strato, shield, caldera, and distributed / flank volcanism)
- Excellent exposure and accessibility for deployments

Phasing

Phase 0: What we can do Right Away

Community Building (i.e., this workshop)

Analyses of Existing Samples & Laboratory Experiments – Develop Common Protocols Modeling – Guide Array Placement

Phase 1: Initial Field Programs

Develop Pilot Sensor Arrays on End-Member Volcanoes Form CONVERSE-type Volcano Advisory Group and Rapid Response Pool Human Deployment for Exhumed Arc and Sensor Volcano Mapping, Sampling Targeted Analytical, Experimental Modeling Lab studies

Phase 2: Focused Field Program and Sensor Arrays

Develop Imaging Arrays in Focus Area

Human Deployment for Mapping, Sampling at Focus Area

Roll out Sensor Arrays to 10-20 volcanoes

Widely-Distributed Analytical, Experimental Modeling Lab studies within Focus Area

Phase 3: Full Roll-Out

Imaging Arrays & Mapping Campaigns in 2 Complementary Regions, Multiple Exhumed Sites Full Sensor Deployment at 30 Volcanoes

Fully-Distributed Analytical, Experimental Modeling Lab studies

Modeling to address MDE objectives:

Guided by the outcomes and report from the Modeling Collaboratory for Subduction (MCS) Volcanic Systems Workshop (Gonnermann and Anderson, 2021)

Physical/numerical model development

- Involves both development of new physics and model implementation/validation
- Accomplished through thematic Community Working Groups (CWGs)
- MCS facility to support new code and updating of existing codes

Inversion and data assimilation

- Organizing researchers to develop frameworks for joint inversions and uncertainty
- Bridge between volcano researchers, applied mathematicians, and data scientists

Training and human capacity building

- Programmatic conduit for development of a growing pool of modelers
- Training for researchers interested in specific codes

Thanks to the 2021-2022 MDE Working Group:

Geoff Abers Pete Barry Ben Black Claire Bucholz Simon Carn Esteban Gazel Trish Gregg Matt Haney Chris Huber Shaul Hurwitz *Adam Kent Fric Kiser Pete LaFemina Yves Moussallam Carolina Muñoz-Saez Diana Roman Christy Till Rick Wessels Heather Wright Wenlu Zhu

Cornell University WHOI CCNY Caltech Michigan Tech Cornell University of Illinois US Geological Survey Brown University US Geological Survey **Oregon State University** University of Arizona Penn State LDEO University of Nevada Reno Carnegie Arizona State University US Geological Survey US Geological Survey University of Maryland

Steering Committee Member

<u>Welcome</u> to the new MDE Working Group:

Geoff	Abers	
Álvaro	Amigo Ramos	
Peter	Barry	
Ben	Black	
Laura	Bono Troncoso	
John	Browning	
Daniel	Díaz	
Esteban	Gazel	
Matt	Haney	
Kayla	lacovino	
Jeffrey	Johnson	
Adam	Kent	
Vali	Memeti	
Carolina	Munoz Saez	
Daniel	O'Hara	
Mike	Poland	
Lizzette	Rodriguez	
Diana	Roman	
Francisco	Vera	
Kevin	Ward	