

https://github.com/mhpi

Hydroml.org

Differentiable and physics-informed modeling to unify machine learning and physical models and advance Geosciences

Chaopeng Shen

¹Civil and Environmental Engineering **Penn State University**

cshen@engr.psu.edu

Hydroml.org HydroML Symposium, May 22-26, 2023, Berkeley, CA

Overview

- What is the fundamental strengths of ML models compared to process-based models?
- What is differentiable modeling in geosciences?
- Examples of differentiable modeling in geosciences?

nature reviews earth & environment

https://doi.org/10.1038/s43017-023-00450-9

Perspective

Check for updates

Differentiable modelling to unify machine learning and physical models for geosciences

A list of authors and their affiliations appears at the end of the paper

Water Resources Research

RESEARCH ARTICLE 10.1029/2019WR026793 Enhancing Streamflow Forecast and Extracting Insights Using Long-Short Term Memory Networks With Data Integration at Continental Scales

Special Section: Big Data & Machin

Big Data & Machine Learning in Water Sciences: Recent Progress and Their Use in Advancing Science

Dapeng Feng¹, Kuai Fang^{1,2}, and Chaopeng Shen¹

Streamflow long-term projection or short-term forecast

Geophysical Research Letters[•]

Research Letter 🛛 🔂 Full Access

A multiscale deep learning model for soil moisture integrating satellite and in-situ data

Jiangtao Liu, Farshid Rahmani, Kathryn Lawson, Chaopeng Shen 🔀

First published: 14 March 2022 | https://doi.org/10.1029/2021GL096847

Multiscale soil moisture

Song, et al., 2023, *Snow Water Equivalent* (under review)

Geophysical Research Letters[•]

Research Letter 🔂 Full Access

Mitigating Prediction Error of Deep Learning Streamflow Models in Large Data-Sparse Regions With Ensemble Modeling and Soft Data

Dapeng Feng, Kathryn Lawson, Chaopeng Shen 🔀

First published: 30 June 2021 | https://doi.org/10.1029/2021GL092999 | Citations: 1
Data-sparse region

Hydrological Processes

RESEARCH ARTICLE 🔂 Full Access

Deep learning approaches for improving prediction of daily stream temperature in data-scarce, unmonitored, and dammed basins

Farshid Rahmani, Chaopeng Shen 🗙 Samantha Oliver, Kathryn Lawson, Alison Appling 🗙

Rahmani et al., 2021b, water temperature

Water Resources Research

Technical Reports: Methods | 🖻 Full Access

Transferring Hydrologic Data Across Continents – Leveraging Data-Rich Regions to Improve Hydrologic Prediction in Data-Sparse Regions

Kai Ma, Dapeng Feng, Kathryn Lawson, Wen-Ping Tsai, Chuan Liang, Xiaorong Huang, Ashutosh Sharma, Chaopeng Shen 🔀

Ma et al., 2021, Transfer Learning

The first phase of hydrologic DL

• Success:

1. DL models very often outperform existing models in accuracy: traditional models **were flawed**.

2. With some adaptations, DL can offer an ecosystem of services.

3. There is synergy of **big data**.

- Lessons:
 - 1. DL models are still **difficult to interpret** or extracting scientific insights from.
 - 2. Surrogate model \Box how to improve above the raw model?
 - 3. May not learn causal relationships.
 - 4. DL models are limited by the issues of their training data:

Only output observed data; limited data quality; nonstationarity

Similarity & Differences between deep learning (DL) and process-based models (PBM)?

This Photo by Unknown Author is licensed under CC BY-SA

This Photo by Unknown Author is licensed under CC BY-NC

Differentiable parameter learning

OPEN

From calibration to parameter learning: Harnessing

nature

ARTICLE

COMMUNICATIONS

https://doi.org/10.1038/s41467-021-26107-z

(a) PBM or PBM's surrogate (optional)

Check for updates

Point #1. Data scaling relationships (network effect?)

- 1. dPL = SCEUA for lowest RMSE
- 2. dPL scales better with more data
- 3. Orders of magnitude more efficient
- 4. (not shown) better results for untrained variables and better spatial generalization than traditional approach!

Tsai et al. 2021, Nature Communications

What is Differentiable Modeling (DM) in Geosciences?

Why is it difficult to understand ML Why can we understand and learn DM better?

Process-Based Optimal^x Process-Based Differentiable Geosciences A Machine Learning Description processed

2 perspectives

What does "Differentiable" mean?

- The ability to rapidly compute gradients $\frac{dL}{d\theta}$
- Enabling training by gradient descent

Automatic differentiation

Example 2. differentiable, learnable models to learn functions

Water Resources Research

Research Article 🔂 Full Access

Differentiable, learnable, regionalized process-based models with multiphysical outputs can approach stateof-the-art hydrologic prediction accuracy

Dapeng Feng, Jiangtao Liu, Kathryn Lawson, Chaopeng Shen 💌

Evolve model structure

Approaching deep networks! And....

- Output untrained variables.
- Multivariate constraints.
- It extrapolates better.
- It can help us answer questions!

Caveat: not using the ensemble -- first iteration. Priors do matter.

C Prediction in Ungauged Regions: Differentiable model surpasses ML

What the ANN learned functions look like?

$$R/P_t = (S_m/F_c)^{\beta}$$

$$R/P_t = ANN(\beta^*, F_c, S_m, S_m/F_c, P_t)$$

Blue line: original power law relation Red dots: ANN simulations Black lines: continuous plotting of ANN functions

Example 4. Water temperature modeling

Prior assumptions matter!

Example 5. Ecosystem modeling

(a) Temporal holdout test for the following system

Runs	Corr		RMSE (μmol m ⁻² s ⁻¹)		Bias (µmol m ⁻² s ⁻¹)		NSE	
	Train	Test	Train	Test	Train	Test	Train	Test
$V_{def} + B_{def}$	0.565		6.780		1.476		0.041	
$V_{def} \!$	0.	.592	5.4	188	1.034		0.318	
V _{def} +B	0.678	0.547	5.887	6.730	1.353	1.754	0.321	-0.084
V+B _{def}	0.769	0.593	4.595	5.677	-0.129	-1.368	0.587	0.229
V+B	0.800	0.748	4.299	4.421	0.037	0.347	0.638	0.532
V+ B **	0.774	0.768	4.269	4.198	0.056	0.092	0.597	0.581

** refers to using C3_only plants in dataset

https://bg.copernicus.org/preprints/bg-2022-211/bg-2022-211.pdf

Example 5. Ongoing effort – using streamflow to learn precipitation bias

NLDAS (0.56) > Daymet (0.41) > Maurer (0.03)

w0 (Daymet)

0.6

0.4

0.8

0.2

0.2	0.4	0.6	0.8

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 w1 (Maurer)

Low bias


```
0.99 1.00 1.01 1.02 1.03
wsum (Sum of Weights)
```

Simulation	Forcings	Median NSE	Median KGE	Low flow RMSE (mm/day)	ET correlation with MODS
LSTM	Daymet	0.747	0.720	0.249	-
Differentiable HBV with bias correction	Daymet	0.745	0.748	0.122	0.82
Multiforcing with bias correction	Daymet, Maurer, NLDAS	0.770	0.780	0.082	0.81

Thank you!

@ChaopengShen cshen@engr.psu.edu

Hydroml.org

BDMI

https://github.com/mhpi

http://water.engr.psu.edu/shen/hydroDL.html

Hydrol. Earth Syst. Sci., 22, 5639-5656, 2018 https://doi.org/10.5194/hess-22-5639-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. (c) (i)

HESS Opinions: Incubating deep-learning-powered hydrologic

science advances as a community

Chaopeng Shen¹, Eric Laloy², Amin Elshorbagy³, Adrian Albert⁴, Jerad Bales⁵, Fi-John Chang⁶, Sangram Ganguly⁷, Kuo-Lin Hsu⁸, Daniel Kifer⁹, Zheng Fang¹⁰, Kuai Fang¹, Dongfeng Li¹⁰, Xiaodong Li¹¹, and Wen-Ping Tsai¹

Water Resources Research

REVIEW ARTICLE

10.1029/2018WR022643

Special Section:

Big Data & Machine Learning in Water Sciences: Recent Progress and Their Use in Advancing Science

A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists

Chaopeng Shen¹

¹Civil and Environmental Engineering, Pennsylvania State University, University Park, PA, USA

